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Abstract

This paper explains the necessity of tensorial form definitions of mechanical quantities in the discrete mechanics of

granular assemblies and how to make such definitions. Particles are assumed to be circular (in 2D) or spheres (in 3D).

First, we explain the Dirichlet tessellation and some important geometric tools defined from this tessellation, i.e. the

contact and dual-contact cells and dual branch vectors, which become necessary for the tensorial form definition.

Comparing the fundamental quantities in discrete and continuum mechanics and regarding their mechanical properties,

especially of stress and strain, we propose a new tensorial form definition for all of discrete-mechanical quantities.

Lastly discussions are made on the properties of these quantities, especially on the internal work and the compatibility

condition of strain.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the micro-mechanics of granular assemblies, the stress is well defined using the contact forces and the

branch vectors of an assembly’s particle graph (e.g. Oda and Iwashita, 1999). However, the strain has not

been clearly defined and its definition has been the subject of recent discussions (Bagi, 1996a; Kuhn, 1997;
Satake, 2002; Kruyt, 2003). This paper proposes new and general definitions of stress, strain and other

discrete-mechanical quantities of granular assemblies, which originate from vector quantities, in a tensorial

form. We first introduce the Dirichlet tessellation (Dirichlet, 1850; also see Oda and Iwashita, 1999), which

is a tessellation of space in a granular assembly. After explaining the correspondence between elements in

the tessellation and the underlying granular assembly, we introduce some new geometric tools, which in-

clude contact and dual-contact cells and dual branch vectors. These cells and vectors appear in the tensorial

form definitions of discrete-mechanical quantities of granular assemblies.
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Mechanical quantities in discrete mechanics of granular assemblies were originally defined in a vectorial

form (Satake, 1993). However, definitions in a tensorial form are necessary for statistical analysis and for

considering of bulk properties of a granular assembly. We propose a new definition of these discrete-

mechanical quantities in a tensorial form, using the above-mentioned geometric tools. As the correspon-
dence between discrete and continuum quantities is fundamentally important, definitions are introduced in

the context of generalized continuum mechanics (Satake, 1971).

The equilibrium and compatibility conditions of stress and strain are compared for discrete and con-

tinuum systems. Lastly, we discuss some related problems with the proposed definition: Bagi’s definition of

strain, the form of internal work, and the compatibility conditions of the symmetric part of strain.

In this paper, particles are assumed to be spheres (in 3D) or disks (in 2D). The symbolic notation (in bold

Roman and Greek letters without indices) is used for vector and tensor quantities and normal weight fonts

are used for scalars.
2. Dirichlet tessellation

For a granular assembly, we introduce the so-called Dirichlet tessellation, as shown in a 2D form in Fig.

1. The Dirichlet tessellation is also known as the radical plane tessellation (Gellatly and Finney, 1982) and
is a modification of the Vorono€ı tessellation (Vorono€ı, 1908). The graph of a Dirichlet tessellation consists

of polygons (polyhedra in 3D), which we call particle cells. The dual graph of the Dirichlet tessellation is the

Delaunay network, and the Delaunay network is a particle graph that is supplemented with virtual

branches, which correspond to non-touching particles, as shown by the broken lines in Fig. 1. By adding

these virtual branches, the Delaunay network becomes a non-overlapping covering of triangles (tetrahedra

in 3D), which are called void cells.

Next, we define the Dirichlet center of each void cell. In 2D, the three tessellating lines of the Dirichlet

tessellation that are perpendicular to the three edges of a void cell (in 3D, the six tessellating planes that are
perpendicular to the six edges of a void cell) always meet at a single point, as is shown in Fig. 2. This point is

named the Dirichlet center of the void cell.

In 2D, a granular assembly has three elements; particles, contacts, and void cells, and in 3D, it has four

elements; particles, contacts, dual-contacts and void cells. A dual-contact is a triangular face in the 3D

Delaunay network through which two tetrahedral void cells are in contact. Table 1 shows the corre-

spondence between elements in the graphs and elements in a 3D granular assembly. To specify the elements,

we use the symbols P , C, D and D. Originally, the symbols (running indices) denote particular spatial points
Fig. 1. Dirichlet tessellation (in 2D).



P2

P1

P3 P4

D1

D2

D3D4

D 

C

P2

r3
C2

P3

P1

r2
C3

r1

C1

D

(a) (b)2D 3D

Fig. 2. Dirichlet center.

Table 1

Correspondence between elements in graphs and a 3D granular assembly

Symbols P (center of

particle)

C (contact

point)

D (Dirichlet center

of dual-contact)

D (Dirichlet cen-

ter of void cell)

Granular assembly Particle Contact Dual-contact Void cell

Dirichlet tessellation Polyhedron Polygon (face of

polyhedron)

Edge of polygon Node

Delaunay network Node Edge of triangle Triangle (face of

tetrahedron)

Tetrahedron

Particle graph Point Branch Loop Cell

Geometric quantities Branch vector lC Loop vector SD

Connecting matrices DPC LDC CDD

Radius vectors rPC sDC tDD
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(as shown in the first line of Table 1). In 3D, P is a center of particle; C is a contact point (or virtual contact
point); D is the Dirichlet center of a dual-contact (a triangular face of a tetrahedral void cell); and D is the

Dirichlet center of a tetrahedral void cell. In 2D, P and C are the same as in 3D and D is the Dirichlet center

of a void cell. In addition, the symbols are used in the following contexts:

• at times, we use the symbols to denote geometric objects associated with the above spatial points, as

shown in Table 1. For example, the symbol C can refer to a branch of the assembly’s particle graph

and a polygonal face (an edge in 2D) of a particle cell, which are associated with the contact point C,
• a symbol can denote a region (area or volume) or mechanical quantities that are associated with the ob-

ject. For example, a void cell D is a three-dimensional region of volume VD with the Dirichlet center D;
the void strain cD (or cD) is a discrete-mechanical strain defined for a void cell D in 2D (or D in 3D).

Denoting the position vectors of the Dirichlet centers D and D by xD and xD, respectively, we can give the

following forms for a triangular void cell (or dual-contact in 3D) D and a tetrahedral void cell D (Satake,

2002):
xD ¼ 1

2SD

X3
i¼1

ci l
_

i; ð1Þ

xD ¼ 1

3VD

X4
i¼1

ciS
_

i: ð2Þ
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l
_

C: Vector associated with an edge C of the triangular void cell (dual-contact in 3D) D, whose magnitude is
equal to the length of edge C and whose direction is the outward normal of edge C.

S
_

D: Vector associated with a face D of the tetrahedral void cell D, whose magnitude is equal to the area of

face D and whose direction is the outward normal of face D.

SD and VD are the area of void cell (dual-contact in 3D) D and the volume of void cell D, respectively, and
cP ¼ 1
2
ðr2P � xP � xP Þ; ð3Þ
where rP is the radius of the particle P and xP is the position vector of the center of particle P . The two
vectors xD and xD in Eqs. (1) and (2) share the same origin as the vector xP .

Three matrices, DPC, LDC and CDD are used to express the topologic correspondence of the four elements

(see Appendix). These matrices are composed of the elements 1, )1, and 0, which correspond to the oriented
graphs of an assembly’s topology. Signed values arise because of the directions of branches or the clock-

wise/counter clockwise orientations of triangular loops that are associated with the contacts between

adjacent particles or the dual-contacts between adjacent void cells. These arbitrary directions or orienta-

tions must be assigned beforehand.

The radius vectors rPC, sDC and tDD are shown in Fig. 3 and are used in the defining the geometric
quantities in this paper. These radius vectors are defined by the locations of the spatial points P , C, D, and
D. For example, the radius vector tDD connects the Dirichlet center of a void cell D with the Dirichlet center

of its face (dual-contact) D. Table 1 contains the connecting matrices and radius vectors described above.
3. Geometric description of contact cells and dual-contact cells

In a granular assembly, contact points are not distributed continuously but are discrete and scattered. A
contact cell of finite area or volume becomes necessary for considering stress and strain that are defined at

each contact point in the discrete mechanics of granular assemblies. That is, a region (volume) must be

assigned to each contact (or dual-contact, as explained later), just as a volume is associated with each

particle cell and void cell. The system of contact cells (or dual-contact cells) is a non-overlapping covering

of the space of a granular assembly. The geometry of contact cells and dual-contact cells are described in

this section.

A branch vector lC is associated with each contact C, and it connects the centers of two particles of the

contact. The contact cell of a contact C in 2D is a quadrangle formed by the branch vector lC and the
corresponding edge C (i.e. the contact edge D1D2 of the two neighboring particle cells P1 and P2), as is
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shown in Fig. 4(a). We introduce a vector hC, expressed as the sum of two dual radius vectors ŝD1C and ŝD2C

(see Fig. 4(a)) and given by the matrix sum
hC ¼ LCDð�ŝDCÞ: ð4Þ

Here we have introduced the ‘‘hat’’ notation ‘‘^ ’’, which for a 2D vector v ¼ ðv1; v2Þ designates the rotated,
dual vector v̂ ¼ ðv2;�v1Þ. This notation will only be used in 2D analysis. The magnitude of hC is equal to the
length of edge C ðD1D2Þ, and its direction is the same as that of lC. Note that the direction of lC is chosen

arbitrarily beforehand, and matrix LCD is the transpose of the loop matrix LDC (see Appendix). hC is called
the dual branch vector of C, and has an important role in the definition of discrete-mechanical strain, as is

explained later. The area of contact cell C is written as
SC ¼ 1
2
lC � hC: ð5Þ
In 3D, the contact cell is a polyhedron formed by a branch vector lC and the corresponding face C (i.e.
the planar contact face D1D2 � � �Dn of two neighboring particle cells (polyhedrons) P1 and P2), as is shown in
Fig. 4(b). Fig. 5 shows the part of a contact cell C that lies within a single void cell (tetrahedron) D1.

Regarding Figs. 4(b) and 5, the dual branch vector in 3D is defined as the matrix product
hC ¼ LCDCDD
1
2
tDD

�
� sDC

�
; ð6Þ
where tDD is the radius vector from the Dirichlet center D (of the void cell D) to the Dirichlet center D (of the
dual-contact D) (Figs. 3(b) and 5). The magnitude of hC is equal to the area of face CðD1D2 � � �DnÞ, and the
direction is the same as that of lC. The volume of contact cell C is written as
VC ¼ 1
3
lC � hC: ð7Þ
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We now describe the dual-contact cell in 3D. Consider two neighboring void cells (tetrahedra) D1 and D2

that share the dual-contact (triangular face) D, as is shown in Fig. 6. The dual-contact cell D is formed from
the dual-contact (triangle) D and the two Dirichlet centers D1 and D2. This dual-contact cell will be used in

the definition of the discrete-mechanical stress function tensors ðuD; vDÞ
T
and the incompatibility tensors

ðJD;KDÞT, as is explained in Section 6. Here we define the two vectors expressed as
SD ¼ LDC
1
2
sDC

�
� lC

�
; ð8Þ

kD ¼ CDDtDD; ð9Þ
and the volume of dual-contact cell D is written as
VD ¼ 1
3
SD � kD: ð10Þ
SD and kD are called the loop vector and dual loop vector of dual-contact D, respectively, and the magnitude
of SD is equal to the area of triangular loop D, and the orientation of SD (clockwise or counter-clockwise) is

the same as that of loop D.
4. Mechanical quantities in discrete and continuum mechanics

In the 3D discrete mechanics of granular assemblies (Satake, 1997a), four mechanical quantities––force,

couple, displacement and rotation––are associated with each of the four elements of a granular assembly

(particles, contacts, dual-contacts and void cells), for a total of 16 mechanical quantities, as is shown in

Table 2. The contact displacement uC and rotation wC mean the relative displacement and rotation at a

contact point, respectively. The quantities of contacts and dual-contacts are defined for the positively

connected particle and void cell, respectively, where a positive connection means that the corresponding

component of matrix DPC or CDD is equal to 1 (see Appendix). The meanings of mechanical quantities for

dual-contacts and void cells will be explained later. In 3D, all of the mechanical quantities are vectors. In
2D, we have only the first three mechanical quantities in Table 2, in which couples and rotations are scalars.

In generalized continuum mechanics (Satake, 1971), we can define each of the four mechanical quantities

in 3D in four different forms, as is shown in Table 3. In 3D, F,M, X, Y are defined in a volume element; r,
l, J , K on an area element; u, v, a, c along a line element; and f , m, w, u at a point. In 2D, F, M , J ,K are

defined on an area element; r, l, a, c along a line element; and u, v, w, u at a point. In common termi-

nology, F, r, and u are body force, stress, and stress function; and c and K are strain and incompatibility,

respectively. It is noted that, in 3D, the quantities of the second and third columns in Table 3 are tensors

and those of the first and fourth columns are vectors. And, in 2D, the quantities become first three kinds,
and M , w, v, J become scalars and l, a, u, K vectors.



Table 2

Discrete-mechanical quantities for granular assemblies

Table 3

Mechanical quantities in generalized continuum mechanics
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For quantities in generalized continuum mechanics, we can introduce some generating equations as is
shown in Table 4, where Grad, Rot, Div are called the Schaefer’s differential operators (Schaefer, 1967),

defined as shown in Table 5. Note that the following identities hold for continuous fields:
Div Rot ¼ 0; Rot Grad ¼ 0: ð11Þ

For mechanical quantities in the discrete mechanics of granular assemblies, we have the quite similar

generating equations shown in Table 6 (Satake, 1993, 1997a). The operators in Table 6 are the following

matrices and are called the fundamental matrices of the discrete mechanics of granular assemblies:
eDPC ¼
DPC 0

DPCrPC � DPC

� �
; eDCP ¼

DCP �DCP rPC�
0 DCP

� �
;

eLCD ¼
LCD 0

�LCDsDC � LCD

� �
; eLDC ¼

LDC LDCsDC�
0 LDC

� �
;

eCDD ¼
CDD 0

�CDDtDD � CDD

� �
; eCDD ¼

CDD CDDtDD�
0 CDD

� �
:

ð12Þ



Table 4

Generating relations in generalized continuum mechanics

Table 5

Schaefer’s differential operators

Grad Rot Div

2D

r 0

�bI r

� �
r� 0

�I � r�

� �

2D
br 0

�I � r

� �
r � 0

I � � r�

� �

3D r 0
I � r

� �
r� 0
I �� r�

� �
r � 0
I � � r�

� �

br ¼ ð@x2 ;�@x1 Þ; bI ¼ 0 1
�1 0

� �
.

Table 6

Generating relations in discrete mechanics
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Using Eq. (A.4) in Appendix, we have the following identities (Satake, 1997b):
eDPC
eLCD ¼ 0; eLCD

eCDD ¼ 0;eCDD
eLDC ¼ 0; eLDC

eDCP ¼ 0;

�
ð13Þ
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which are quite analogous to Eq. (A.4) and correspond to Eq. (11) in continuum mechanics. In 2D, the

operators �DCP rPC� and LDCsDC� in Eq. (12) should be replaced by �DCPbrPC and LDCbsDC, respectively.

5. Discrete-mechanical definition of stress and strain

In this section, we review the definition of stress both in continuum and discrete mechanics and introduce

the definition of strain along the same line of consideration.

The stress in 3D continuum mechanics is defined, for a small sphere with radius a, as
r ¼ lim
a!0

1

V

I
rf dS; ð14Þ
where r and f denote the radius vector and stress vector, respectively, and V is the volume of the sphere.

Note that rf denotes a dyadic product of r and f , which can also be written as r
 f .
In a quite similar manner, in discrete mechanics, we can define the particle stress, the stress for a particle

P , in the following form:
rP ¼ 1

VP
DPCrPCf C; ð15Þ
where rPC is the radius vector from the center of particle P to the contact point C, and VP is the volume of
the particle cell (Fig. 7). When DPC is )1, contact force f C acts upon particle P ; when DPC is )1, �f C acts
upon particle P . Note that, in the more general case, this definition is applicable even to non-spherical

particles. For an RVE (representative volume element) R that includes a sufficient number of contiguous

particles, we can define the global stress r, an average stress having the following forms:
r ¼ 1

V

X
P

VPrP ¼ 1

V

X
C

lCf C; ð16Þ
where V is the volume of R and branch vector
lC ¼ DCP rPC ð17Þ
with DCP denoting the transpose of the incidence matrix DPC. Here
P

P or
P

C means that the summation
should be made for P 2 R or C 2 R. At the boundary of R, Eq. (17) is not strictly satisfied for P 2 R or
P

C

fc

rPC

Fig. 7. Particle cell P for definition of particle stress rP .
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C 2 R. However, as the effect is considered as small, the error in Eq. (16) due to this matter will be dis-

regarded. It is noteworthy that Eq. (16) is also derivable from the virtual work principle (Christoffersen
et al., 1981).

We also introduce the contact stress of a contact C, defined as
rC ¼ 1

3VC
lCf C: ð18Þ
The contact stress is associated with an element of volume 3VC (area 2SC in 2D, see Fig. 8) and is an

incomplete tensor, as understood from the definition. From Eq. (18) we find the global stress is written as
r ¼ 1

V

X
C

3VCrC: ð19Þ
For the couple stress, we can also derive similar definitions of lP ,l, and lC and their related equations as

explained for stress, replacing f C with the contact couple mC in Eqs. (15)–(19).

We now proceed to the strain c. Referring to a relation in generalized continuum mechanics, expressed as
dx � c ¼ duþ dx� w; ð20Þ

where u and w are a displacement and rotation (Table 3), we can write, for a small circle of radius a,
c ¼ lim
a!0

1

pa

I
tðduþ dx� wÞ; ð21Þ
where t is a unit tangent vector with the same direction as dx.
Regarding Eq. (21), we define the void strain (in 2D), the strain of a void cell D (Fig. 9) in the discrete

mechanics of granular material:
cD ¼ 1

SD
LDCð�bsDCÞuC ð22Þ
recalling the ‘‘^’’ notation defined after Eq. (4). In Eq. (22), sDC and uC are the void cell radius vector (Fig.

3) and the contact displacement (Table 2), respectively, and
SD ¼ 1
2
LDCð�bsDCÞ � lC ¼ 1

2
LDCsDC � lC ð23Þ
is the area of the void cell D. For a two-dimensional RVE with area S, the average strain is defined in the

following form:
c ¼ 1 X
SDcD ¼ 1 X

LDCð�bsDCÞuC ¼ 1 X
LCDð�bsDCÞuC ¼ 1 X

hCuC: ð24Þ

S D S D S

C
S

C
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Fig. 9. Void cell D for definition of void strain cD.
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In 3D, we define the void strain, the strain for a void cell D, in the following form:
cD ¼ 1

VD
CDDLDC

1

2
tDD

�
� sDC

�
uC; ð25Þ
where tDD and sDC are radius vectors (Figs. 3(b) and 5), and
VD ¼ CDD
1
3
tDD � LDC

1
2
sDC � lC ¼ 1

6
CDDLDClC � ðtDD � sDCÞ ð26Þ
is the volume of the void cell D. The meaning of strain cD will be described below. The global strain for an

RVE of volume V is defined in the following forms:
c ¼ 1

V

X
D

VDcD ¼ 1

V

X
D

CDDLDC
1

2
tDD

�
� sDC

�
uC ¼ 1

V

X
C

LCDCDD

1

2
tDD

�
� sDC

�
uC ¼ 1

V

X
C

hCuC:

ð27Þ
In this equation, we have used the identity (6), and, by doing so, have expressed the global strain in

alternative forms: as a sum over void cell volumes and as a sum over contact cell volumes (see Eq. (30)).

As the contact displacement uC includes the effect of particle rotations, referring to Eq. (20), we intro-

duce the contact strain cC, the strain at a contact C, having the property
lC � cC ¼ uC: ð28Þ

Using Eq. (7), we can write the following definition of strain cC, which satisfies Eq. (28):
cC ¼ 1

3VC
hCuC; ð29Þ
noting, however, that Eq. (28) does not infer a unique definition of contact strain cC, such as the one given
in Eq. (29). The global strain c defined from cD is also written as
c ¼ 1

V

X
C

3VCcC: ð30Þ
It is noted here that, like as the contact stress rC, the contact strain cC is an incomplete tensor. From this

reason, the void strain cD (or cD in 2D) that is a complete tensor becomes necessary in the discrete

mechanics of granular assemblies. By adopting Eq. (29) as a generating definition of contact strain cC, we
can now explain the meaning of the void strain cD in Eq. (25). Unlike other definitions of strain in granular

materials (e.g., Bagi, 1996a; Kruyt and Rothenburg, 1996; Kuhn, 1997), the void strain cD does not rep-
resent the average deformation of a tetrahedron whose vertices (particle centers) are being displaced but
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whose edges remain straight. Such strain definitions are based only on the displacements uP of the particle
centers; whereas, cD is based upon the contact displacements uC, which depend both upon the particle

displacements and rotations, uP and wP , as given in Table 6. The contact strain cC is generated from the

contact displacement uC (see Eq. (28)), and the void strain cD in Eq. (25) is inferred from the identical sums
in Eq. (27). Because cD and cC are derived from the combination of a displacement and rotation field, the

associated compatibility conditions are altered, as is discussed in Section 7.

For the rotational strain, we can also derive similar definitions for aD, aD, a, and aC and their related

equations by replacing uC with the contact rotation wC in Eqs. (22)
(30). We note that rC, lC, cC, and aC

are the basic tensorial form definitions for stress and strain in the discrete mechanics of granular assemblies.

Next, we consider the internal work done in a three-dimensional RVE. We might write the work as
W ¼
X
C

ðf C � uC þmC � wCÞ ¼
X
C

3VCðrC � �cC þ lC � �aCÞ; ð31Þ
but note that the Hill’s condition (Hill, 1963)
W ¼ V ðr � �c þ l � �aÞ ð32Þ
does not hold for the stress and strain definitions in Eqs. (16) and (24). However, by combining Eqs. (7),

(18) and (29), we can introduce a special double inner product �� (with respect to quantities nC and gC for

contacts C), having the property
n � �g ¼ 1

V

X
C

3VCðnC � �gCÞ; ð33Þ
n ¼ 1

V

X
C

3VCnC; g ¼ 1

V

X
C

3VCgC; ð34Þ
so that Eq. (31) becomes
W ¼ V ðr � �c þ l � �aÞ: ð35Þ
This equation is considered a modified form of Hill’s condition for discrete, granular assemblies.
6. Tensorial form definition of discrete-mechanical quantities

As seen in the previous section, we need to introduce tensor definitions of discrete-mechanical quantities
for the following reasons:

(1) To consider global, bulk mechanical properties, we must introduce averaging quantities that are tenso-

rial.

(2) Because the mechanical quantities in continuum mechanics are tensorial, we must introduce definitions

of discrete-mechanical quantities in a tensorial form in order to make comparisons between discrete-

and continuum-mechanical systems.

Regarding the definitions of contact stress and contact strain explained in the previous section, we

introduce the basic tensorial form definitions of discrete-mechanical quantities in Table 7. As is understood



Table 7

Basic tensorial form definitions of discrete-mechanical quantities

Particle Contact Void

2D
Force

FP

MP

� �
¼ 1

SP

f P
mP

� �
,

rC

lC

� �
¼ lC
2SC

f C

mC

� �
,

uD

vD

� �
¼ f D

mD

� �
Couple

Rotation
wP

uP

� �
,

aC

cC

� �
¼ hC
2SC

wC

uC

� �
,

JD
KD

� �
¼ 1

SD

wD

uD

� �
Displacement

Dual-contact Void cell

3D

Force
FP

MP

� �
¼ 1

VP

f P

mP

� �
,

rC

lC

� �
¼ lC
3VC

f C

mC

� �
,

uD

vD

� �
¼ SD

3VD

f D
mD

� �
,

f D

mD

� �
Couple

Rotation
wP

uP

� �
,

aC

cC

� �
¼ hC
3VC

wC

uC

� �
,

JD

KD

� �
¼ kD

3VD

wD

uD

� �
,

XD
YD

� �
¼ 1

VD

wD
mD

� �
Displacement
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from Table 7, the meanings of discrete-mechanical quantities defined for a dual-contact D, ðf D, mDÞT and
ðwD; uDÞT, are the stress function and incompatibility, respectively.
7. Conditions for stress and strain

In this section, we explain the conditions for stress and strain, comparing the related equations in

continuum and discrete mechanics. In continuum mechanics, referring to Table 4, equilibrium in 3D is

expressed as
Div
r
l

� �
þ F

M

� �
¼ 0; ð36Þ
where ðF;MÞT is the body force (density) given to the field beforehand. If we have a stress function ðu; vÞT,
which satisfies the relation
r
l

� �
¼ Rot

u
v

� �
; ð37Þ
the body force must vanish (see Eq. (11)). In this case, the equilibrium condition of ðr; lÞT becomes
Div
r
l

� �
¼ r � 0

I � � r�

� �
r
l

� �
¼ 0: ð38Þ
In discrete mechanics, the equilibrium condition in 3D, which corresponds to Eq. (36), is written as

(Tables 6 and 7)
�eDPChC � rC

lC

� �
þ VP

FP

MP

� �
¼ 0; ð39Þ
where ðFP ;MP ÞT is the average body force and couple (density) within a particle cell P , and VP is the volume
of particle cell P . For zero body force, the corresponding equations to Eqs. (37) and (38) are
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rC

lC

� �
¼ lC
3VC

eLCDkD � uD

vD

� �
; ð40Þ
eDPChC � rC

lC

� �
¼ DPC 0

DPCrPC � DPC

� �
hC � rC

hC � lC

� �
¼ 0; ð41Þ
where hC and kD are defined in Eqs. (6) and (9). Note that, in discrete mechanics, Eq. (13) are used in place

of Eq. (11).

In continuum mechanics, the incompatibility ðJ;KÞT is defined in the form
J
K

� �
¼ Rot

a
c

� �
; ð42Þ
and if the strains ða; cÞT are derived from the displacements and rotations ðw; uÞT by the relation
a
c

� �
¼ Grad

w
u

� �
; ð43Þ
then the incompatibility must vanish (see Eq. (11)). In this case, we have the equation
Rot
a
c

� �
¼ r� 0

I �� r�

� �
a
c

� �
¼ 0; ð44Þ
which is called the compatibility condition of strains ða; cÞT.
In discrete mechanics, the corresponding equations to Eqs. (42)
(44) are written as
JD

KD

� �
¼ kD

3VD
ðeLDCÞTlC � aC

cC

� �
; ð45Þ
aC

cC

� �
¼ � hC

3VC
ðeDCP ÞT

wP

uP

� �
; ð46Þ
ðeLDCÞTlC � aC

cC

� �
¼ LDC 0

LDCsDC � LDC

� �
lC � aC

lC � cC

� �
¼ 0: ð47Þ
In 2D, the operators DCP rPC� and LDCsDC� in Eqs. (41) and (47) should be replaced by DCP r̂PC and LDC ŝDC,
respectively.
8. Discussions

For the strain in granular assemblies, Bagi (1996a) proposed a similar definition to that in this paper.

Bagi’s definition of strain is based on a discretization of the integral transform equation in continuum

mechanics and has a form similar to the last right side of Eq. (27). One difference is that the so-called

complementary area vector is used in place of the dual branch vector. As is explained by Satake (2002), this

means that in Bagi’s definition, the center of gravity of a void cell is used in place of the Dirichlet center, so

that particle size is disregarded. It is noteworthy that, although any point may be used in place of the

Dirichlet center, the use of the Dirichlet center makes the geometrical explanation most simple and clear, so

that a systematic analysis, such as made in this paper, becomes easy both in 2D and 3D. Another difference
between the strain definition in Eq. (27) and Bagi’s definition is that Eq. (27) is based upon a contact

displacement, that is the relative displacement of two points of a former contact point, whereas Bagi’s
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definition is based upon the relative displacement of particle centers, as was explained after Eq. (30). The

definition of strain in 2D using the center of gravity was also proposed by Kruyt and Rothenburg (1996).

As for internal work in a granular assembly, we can give the following extended expressions. If we

assume that ðf C, mCÞT and ðuD, wD)
T are generated from ðf D, mD)

T and (uC, wC)
T by the generating

equations shown in Table 6, respectively, then we have
W ¼
X
C

ðf C;mCÞ �
uC
wC

� �
¼

X
C

ðf D;mDÞðeLCDÞT � ðeLDCÞ�1
uD
wD

� �
¼

X
D

ðf D;mDÞ �
uD
wD

� �
: ð48Þ
Using the relations shown in Table 7, we can write Eq. (48) as
W ¼
X
C

3VCðrC; lCÞ � �
cC
aC

� �
¼

X
C

ðf C;mCÞ �
uC
wC

� �
¼

X
D

ðf D;mDÞ �
uD
wD

� �

¼
X
D

3VDðuD; vDÞ � �
KD

JD

� �
: ð49Þ
If we apply the special double product �� defined by Eqs. (33) and (34) to dual-contacts D, we can write
W ¼ V ðu � �K þ v � �JÞ; ð50Þ

where
u ¼ 1

V

X
D

3VDuD; K ¼ 1

V

X
D

3VDKD; ð51Þ
and similar equations for v and J.
Quite similarly, if we assume that ðf P ;mP ÞT and ðuC;wCÞT are generated from (f C, mCÞT and (uP , wP ÞT,

respectively, we can write
W ¼ V ðF � �uþM � �wÞ; ð52Þ

where
F ¼ 1

V

X
P

VPFP ; u ¼ 1

V

X
P

VPuP ; ð53Þ
and similar equations for M and w. In this case, the special inner product �� is applied for particles P . It is
noted that equations similar to Eqs. (50) and (52) are derived in generalized continuum mechanics from the

integral transform principles (Satake, 1971).

In continuum mechanics, the symmetric part of strain c is written as e and is simply called strain. In
ordinary, classical continua we have
w ¼ 1
2
r� u; ð54Þ
and accordingly e coincides with c. The compatibility condition of e is written as
rr��e ¼ 0: ð55Þ

In discrete mechanics, the symmetric parts of strains cC and c, defined by Eqs. (29) and (27) respectively,

are written as
eC ¼ 1

2
ðcC þ cTCÞ ¼

1

6VC
ðhCuC þ uChCÞ; ð56Þ

e ¼ 1

2
ðc þ cTÞ ¼ 1

V

X
C

3VCeC ¼ 1

2V

X
C

ðhCuC þ uChCÞ: ð57Þ
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The compatibility condition of eC is written as
ðLDClC�ÞðLDClC�ÞeC ¼ �ðLDClC�ÞLDCsDC � wC: ð58Þ
It is noted here that, in the discrete mechanics of granular assemblies, the right side of Eq. (58) does not

vanish, owing to the inhomogeneity of particle size and configuration in the assembly.
9. Concluding remarks

This paper proposed tensorial form definitions of discrete-mechanical quantities for granular assemblies

using some new geometric tools based on the Dirichlet tessellation of an assembly. Although the tensorial
form definition of stress has been already known, this paper adds similar tensorial form definitions for other

mechanical quantities including the strain in discrete mechanics of granular assemblies. This paper ex-

plained how valuable such definitions are for considering the correspondence between discrete and con-

tinuum mechanics.

As the particles considered in this paper are limited to spheres or disks, a more general theory for

granular assemblies with arbitrary shape (e.g. Bagi, 1996b) must become necessary. However, in the present

stage, we put off this problem for a future work.
Appendix. Matrices DPC , LDC , and CDD

In this paper, we use the following matrices DPC, LDC, and CDD to express the topologic correspondence

of the three or four elements of a granular assembly; P , C, and D in 2D; P , C, D, and D in 3D (see Table 1):

The incidence matrix DPC for a particle graph (oriented graph) is defined as
DPC ¼
1 : if branch vector lC is incident at particle center P and is oriented away from P ;
�1 : if branch vector lC is incident at particle center P and is oriented toward P ;
0 : otherwise;

8<
:

ðA:1Þ

where the direction of branch vector lC is arbitrarily given beforehand.

The loop matrix LDC for a triangular loop (void cell in 2D, or dual-contact in 3D) D is defined as
LDC ¼

1 : if branch vector lC is included in loop D and the orientation of lC
and that of loop D coincide;

�1 : if branch vector lC is included in loop D and the orientation of lC
and that of loop D do not coincide;

0 : otherwise;

8>>>><
>>>>:

ðA:2Þ
where the orientation (clockwise or counter-clockwise) of loop D is fixed as clockwise in 2D and is arbi-

trarily given beforehand in 3D.

In 3D, we need the cell matrix CDD for a void cell D defined as
CDD ¼
1 : orientation of loop ðdual-contactÞ D is counter-clockwise as a face of void cell D;
�1 : orientation of loop ðdual-contactÞ D is clockwise as a face of void cell D;
0 : otherwise:

8<
:

ðA:3Þ
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As is known in the graph theory, the above matrices satisfy the following identities:
DPCLCD ¼ 0; LCDCDD ¼ 0;
CDDLDC ¼ 0; LDCDCP ¼ 0;

�
ðA:4Þ
where DCP , LCD and CDD are the transpose of DPC, LDC and CDD, respectively.
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