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Abstract

This paper explains the necessity of tensorial form definitions of mechanical quantities in the discrete mechanics of
granular assemblies and how to make such definitions. Particles are assumed to be circular (in 2D) or spheres (in 3D).
First, we explain the Dirichlet tessellation and some important geometric tools defined from this tessellation, i.e. the
contact and dual-contact cells and dual branch vectors, which become necessary for the tensorial form definition.
Comparing the fundamental quantities in discrete and continuum mechanics and regarding their mechanical properties,
especially of stress and strain, we propose a new tensorial form definition for all of discrete-mechanical quantities.
Lastly discussions are made on the properties of these quantities, especially on the internal work and the compatibility
condition of strain.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the micro-mechanics of granular assemblies, the stress is well defined using the contact forces and the
branch vectors of an assembly’s particle graph (e.g. Oda and Iwashita, 1999). However, the strain has not
been clearly defined and its definition has been the subject of recent discussions (Bagi, 1996a; Kuhn, 1997,
Satake, 2002; Kruyt, 2003). This paper proposes new and general definitions of stress, strain and other
discrete-mechanical quantities of granular assemblies, which originate from vector quantities, in a tensorial
form. We first introduce the Dirichlet tessellation (Dirichlet, 1850; also see Oda and Iwashita, 1999), which
is a tessellation of space in a granular assembly. After explaining the correspondence between elements in
the tessellation and the underlying granular assembly, we introduce some new geometric tools, which in-
clude contact and dual-contact cells and dual branch vectors. These cells and vectors appear in the tensorial
form definitions of discrete-mechanical quantities of granular assemblies.
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Mechanical quantities in discrete mechanics of granular assemblies were originally defined in a vectorial
form (Satake, 1993). However, definitions in a tensorial form are necessary for statistical analysis and for
considering of bulk properties of a granular assembly. We propose a new definition of these discrete-
mechanical quantities in a tensorial form, using the above-mentioned geometric tools. As the correspon-
dence between discrete and continuum quantities is fundamentally important, definitions are introduced in
the context of generalized continuum mechanics (Satake, 1971).

The equilibrium and compatibility conditions of stress and strain are compared for discrete and con-
tinuum systems. Lastly, we discuss some related problems with the proposed definition: Bagi’s definition of
strain, the form of internal work, and the compatibility conditions of the symmetric part of strain.

In this paper, particles are assumed to be spheres (in 3D) or disks (in 2D). The symbolic notation (in bold
Roman and Greek letters without indices) is used for vector and tensor quantities and normal weight fonts
are used for scalars.

2. Dirichlet tessellation

For a granular assembly, we introduce the so-called Dirichlet tessellation, as shown in a 2D form in Fig.
1. The Dirichlet tessellation is also known as the radical plane tessellation (Gellatly and Finney, 1982) and
is a modification of the Voronoi tessellation (Voronoi, 1908). The graph of a Dirichlet tessellation consists
of polygons (polyhedra in 3D), which we call particle cells. The dual graph of the Dirichlet tessellation is the
Delaunay network, and the Delaunay network is a particle graph that is supplemented with virtual
branches, which correspond to non-touching particles, as shown by the broken lines in Fig. 1. By adding
these virtual branches, the Delaunay network becomes a non-overlapping covering of triangles (tetrahedra
in 3D), which are called void cells.

Next, we define the Dirichlet center of each void cell. In 2D, the three tessellating lines of the Dirichlet
tessellation that are perpendicular to the three edges of a void cell (in 3D, the six tessellating planes that are
perpendicular to the six edges of a void cell) always meet at a single point, as is shown in Fig. 2. This point is
named the Dirichlet center of the void cell.

In 2D, a granular assembly has three elements; particles, contacts, and void cells, and in 3D, it has four
elements; particles, contacts, dual-contacts and void cells. A dual-contact is a triangular face in the 3D
Delaunay network through which two tetrahedral void cells are in contact. Table 1 shows the corre-
spondence between elements in the graphs and elements in a 3D granular assembly. To specify the elements,
we use the symbols P, C, D and D. Originally, the symbols (running indices) denote particular spatial points

Dirichlet tessellation

Delaunay network
(Broken line indicates
virtual branches)

Fig. 1. Dirichlet tessellation (in 2D).
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() 3D

Fig. 2. Dirichlet center.

Table 1
Correspondence between elements in graphs and a 3D granular assembly
Symbols P (center of C (contact D (Dirichlet center D (Dirichlet cen-
particle) point) of dual-contact) ter of void cell)
Granular assembly Particle Contact Dual-contact Void cell
Dirichlet tessellation  Polyhedron Polygon (face of Edge of polygon Node
polyhedron)
Delaunay network Node Edge of triangle Triangle (face of Tetrahedron
tetrahedron)
Particle graph Point Branch Loop Cell
Geometric quantities Branch vector /¢ Loop vector S)p
Connecting matrices Dpc Lpc Crp
Radius vectors Fpc Spe tsp

(as shown in the first line of Table 1). In 3D, P is a center of particle; C is a contact point (or virtual contact
point); D is the Dirichlet center of a dual-contact (a triangular face of a tetrahedral void cell); and D is the
Dirichlet center of a tetrahedral void cell. In 2D, P and C are the same as in 3D and D is the Dirichlet center
of a void cell. In addition, the symbols are used in the following contexts:

e at times, we use the symbols to denote geometric objects associated with the above spatial points, as
shown in Table 1. For example, the symbol C can refer to a branch of the assembly’s particle graph
and a polygonal face (an edge in 2D) of a particle cell, which are associated with the contact point C,

e asymbol can denote a region (area or volume) or mechanical quantities that are associated with the ob-
ject. For example, a void cell D is a three-dimensional region of volume V4 with the Dirichlet center D;
the void strain y,, (or y5) is a discrete-mechanical strain defined for a void cell D in 2D (or D in 3D).

Denoting the position vectors of the Dirichlet centers D and D by xp and x5, respectively, we can give the
following forms for a triangular void cell (or dual-contact in 3D) D and a tetrahedral void cell D (Satake,
2002):

1 S~
=50 ;cili, (1)

1 K o
xE = 3— C,-S,'. (2)
i=1

1

o]l
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Fig. 3. Radius vectors.

I ¢: Vector associated with an edge C of the triangular void cell (dual-contact in 3D) D, whose magnitude is

equal to the length of edge C and whose direction is the outward normal of edge C.

Sp: Vector associated with a face D of the tetrahedral void cell D, whose magnitude is equal to the area of
face D and whose direction is the outward normal of face D.

Sp and V5 are the area of void cell (dual-contact in 3D) D and the volume of void cell D, respectively, and

cp = %(rf, — Xp - Xp), 3)

where rp is the radius of the particle P and xp is the position vector of the center of particle P. The two
vectors xp and x5 in Egs. (1) and (2) share the same origin as the vector xp.

Three matrices, Dpc, Lpc and Cyj, are used to express the topologic correspondence of the four elements
(see Appendix). These matrices are composed of the elements 1, —1, and 0, which correspond to the oriented
graphs of an assembly’s topology. Signed values arise because of the directions of branches or the clock-
wise/counter clockwise orientations of triangular loops that are associated with the contacts between
adjacent particles or the dual-contacts between adjacent void cells. These arbitrary directions or orienta-
tions must be assigned beforehand.

The radius vectors rpc, spc and t5, are shown in Fig. 3 and are used in the defining the geometric
quantities in this paper. These radius vectors are defined by the locations of the spatial points P, C, D, and
D. For example, the radius vector t5,, connects the Dirichlet center of a void cell D with the Dirichlet center
of its face (dual-contact) D. Table 1 contains the connecting matrices and radius vectors described above.

3. Geometric description of contact cells and dual-contact cells

In a granular assembly, contact points are not distributed continuously but are discrete and scattered. A
contact cell of finite area or volume becomes necessary for considering stress and strain that are defined at
each contact point in the discrete mechanics of granular assemblies. That is, a region (volume) must be
assigned to each contact (or dual-contact, as explained later), just as a volume is associated with each
particle cell and void cell. The system of contact cells (or dual-contact cells) is a non-overlapping covering
of the space of a granular assembly. The geometry of contact cells and dual-contact cells are described in
this section.

A branch vector /¢ is associated with each contact C, and it connects the centers of two particles of the
contact. The contact cell of a contact C in 2D is a quadrangle formed by the branch vector /- and the
corresponding edge C (i.e. the contact edge DD, of the two neighboring particle cells P, and P,), as is



M. Satake | International Journal of Solids and Structures 41 (2004) 5775-5791 5779

P

NS
4

P

@

Fig. 4. Contact cell.

R
Contact face C of particle cells P, and P,

Fig. 5. A part of contact cell C that lies within a void cell D;.

shown in Fig. 4(a). We introduce a vector /¢, expressed as the sum of two dual radius vectors $p,c and $p,c
(see Fig. 4(a)) and given by the matrix sum

he = Lep(—38pe)- 4)

Here we have introduced the “hat” notation “A ™, which for a 2D vector v = (v, v;) designates the rotated,
dual vector ¥ = (v, —v;). This notation will only be used in 2D analysis. The magnitude of /¢ is equal to the
length of edge C (DD;), and its direction is the same as that of /. Note that the direction of /¢ is chosen
arbitrarily beforehand, and matrix L¢p is the transpose of the loop matrix Lyc (see Appendix). A¢ is called
the dual branch vector of C, and has an important role in the definition of discrete-mechanical strain, as is
explained later. The area of contact cell C is written as

Se=11c-he. (5)

In 3D, the contact cell is a polyhedron formed by a branch vector /- and the corresponding face C (i.e.
the planar contact face D, D, - - - D, of two neighboring particle cells (polyhedrons) P, and P,), as is shown in
Fig. 4(b). Fig. 5 shows the part of a contact cell C that lies within a single void cell (tetrahedron) D;.
Regarding Figs. 4(b) and 5, the dual branch vector in 3D is defined as the matrix product

hc = LCDCDB(% tBD X SDC)7 (6)

where #5,, is the radius vector from the Dirichlet center D (of the void cell D) to the Dirichlet center D (of the
dual-contact D) (Figs. 3(b) and 5). The magnitude of A¢ is equal to the area of face C(D,D, - - - D,), and the
direction is the same as that of /.. The volume of contact cell C is written as

Ve=1lc - he. (7)
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Fig. 6. Dual-contact cell.

We now describe the dual-contact cell in 3D. Consider two neighboring void cells (tetrahedra) D, and D,
that share the dual-contact (triangular face) D, as is shown in Fig. 6. The dual-contact cell D is formed from
the dual-contact (triangle) D and the two Dirichlet centers D; and D,. This dual-contact cell will be used in
the definition of the discrete-mechanical stress function tensors (¢, 7,)" and the incompatibility tensors
(Jp, K D)T, as is explained in Section 6. Here we define the two vectors expressed as

Sp = Lpc(} spc x Ic), (8)

kp = CD5t5D7 <9)
and the volume of dual-contact cell D is written as

Vp :%SD'kD. (10)

Sp and kp are called the loop vector and dual loop vector of dual-contact D, respectively, and the magnitude
of S is equal to the area of triangular loop D, and the orientation of S (clockwise or counter-clockwise) is
the same as that of loop D.

4. Mechanical quantities in discrete and continuum mechanics

In the 3D discrete mechanics of granular assemblies (Satake, 1997a), four mechanical quantities—force,
couple, displacement and rotation—are associated with each of the four elements of a granular assembly
(particles, contacts, dual-contacts and void cells), for a total of 16 mechanical quantities, as is shown in
Table 2. The contact displacement u- and rotation wc mean the relative displacement and rotation at a
contact point, respectively. The quantities of contacts and dual-contacts are defined for the positively
connected particle and void cell, respectively, where a positive connection means that the corresponding
component of matrix Dpc or Cy,, is equal to 1 (see Appendix). The meanings of mechanical quantities for
dual-contacts and void cells will be explained later. In 3D, all of the mechanical quantities are vectors. In
2D, we have only the first three mechanical quantities in Table 2, in which couples and rotations are scalars.

In generalized continuum mechanics (Satake, 1971), we can define each of the four mechanical quantities
in 3D in four different forms, as is shown in Table 3. In 3D, F, M, X, Y are defined in a volume element; o,
u, J, K on an area element; ¢, y, «, 7 along a line element; and f, m, w, u at a point. In 2D, F, M, J,K are
defined on an area element; o, u, «, y along a line element; and ¢, y, w, u at a point. In common termi-
nology, F, g, and ¢ are body force, stress, and stress function; and y and K are strain and incompatibility,
respectively. It is noted that, in 3D, the quantities of the second and third columns in Table 3 are tensors
and those of the first and fourth columns are vectors. And, in 2D, the quantities become first three kinds,
and M, w, y, J become scalars and p, «, ¢, K vectors.
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Table 2
Discrete-mechanical quantities for granular assemblies
Particle Contact Dual-contact Void cell
(Void cell)
2D 3D
Force Jr Je Jo [ D
Couple mp me mp mp
Displacement up uc up ug
Rotation Wp we wp wp
Table 3
Mechanical quantities in generalized continuum mechanics
2D 3D
Force F c Y f
Couple M i X m
Rotation w o J X
Displacement u Y K Y

5781

For quantities in generalized continuum mechanics, we can introduce some generating equations as is
shown in Table 4, where Grad, Rot, Div are called the Schaefer’s differential operators (Schaefer, 1967),

defined as shown in Table 5. Note that the following identities hold for continuous fields:

Div Rot =0, Rot Grad = 0.

(11)

For mechanical quantities in the discrete mechanics of granular assemblies, we have the quite similar
generating equations shown in Table 6 (Satake, 1993, 1997a). The operators in Table 6 are the following

matrices and are called the fundamental matrices of the discrete mechanics of granular assemblies:

~ D 0 ~ D -D X
Dpe = ( PC ), Dep = ( cp cp¥pc >7
Dpcl"pc X DPC 0 DCP
~ Lep 0 ~ Lpc  LpcSpe X
LCD = ) LDC = ’
—LepSpe X Lep 0 Lpc
C—— Cop 0 Ce — Cop CoplppX
PP\ ~Cuptp Cos)’ PPN 0 C5 ‘
pblpp X D DD

(12)
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Table 4

Generating relations in generalized continuum mechanics
2D 3D

o e 4 O 4 G R = CA T o
e 4 B o S o RO AP O R G B 0

2D 3D
Table 5
Schaefer’s differential operators
Grad Rot Div
(5 %) (% v
D -1 Vv —I- Vx
v oo V- 0
2D <—l‘ V) <I->< V-)
3D vV 0 Vx 0 V- 0
Ix V Ixx Vx I -x V.
S -~ 0 1
T-@.-0). 1= )
Table 6
Generating relations in discrete mechanics
Particle Contact Dual-contact Void cell
(Void cell)
2D 3D
Force [fpj_ 5 (f(j (f(‘jzz (ij (ij _é _(fﬁ\ (f5)
Couple mp) PC me)’ me CDDmD ’ mp) i DDL’”*J ’ kmf)J
Displacement (”P] ("Cj—,ﬁ (upj (”Dj _i (u( ] (uL—)\:é_ [ub)
Rotation wp)’ we) P wp)’ wp e we)’ LWBJ PP\,
2D 3D
Using Eq. (A.4) in Appendix, we have the following identities (Satake, 1997b):
Dl =0 TaCy =0 1)
CspLpc =0, LpcDep =0,
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which are quite analogous to Eq. (A.4) and correspond to Eq. (11) in continuum mechanics. In 2D, the
operators —D¢prpe X and Lpespex in Eq. (12) should be replaced by —Dcprpe and LpeSpe, Trespectively.

5. Discrete-mechanical definition of stress and strain

In this section, we review the definition of stress both in continuum and discrete mechanics and introduce
the definition of strain along the same line of consideration.
The stress in 3D continuum mechanics is defined, for a small sphere with radius a, as

o= hm ! rfds, (14)

where r and f denote the radius vector and stress vector, respectively, and V' is the volume of the sphere.
Note that rf denotes a dyadic product of r and f, which can also be written as r ® f.

In a quite similar manner, in discrete mechanics, we can define the particle stress, the stress for a particle
P, in the following form:

1
Op :_DPCVPCny (15)

A
where rpc 1s the radius vector from the center of particle P to the contact point C, and V} is the volume of
the particle cell (Fig. 7). When Dpc is —1, contact force f~ acts upon particle P; when Dpc is —1, —f - acts
upon particle P. Note that, in the more general case, this definition is applicable even to non-spherical
particles. For an RVE (representative volume element) R that includes a sufficient number of contiguous
particles, we can define the global stress o, an average stress having the following forms:

1 1
=y 3o =y 3 "
where V is the volume of R and branch vector
lc = Deprpe (17)

with Dcp denoting the transpose of the incidence matrix Dpc. Here Y, or ). means that the summation
should be made for P € R or C € R. At the boundary of R, Eq. (17) is not strictly satisfied for P € R or

(,-J?
(=

Fig. 7. Particle cell P for definition of particle stress op.
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Fig. 8. Area element for definition of contact stress oc.

C € R. However, as the effect is considered as small, the error in Eq. (16) due to this matter will be dis-
regarded. It is noteworthy that Eq. (16) is also derivable from the virtual work principle (Christoffersen
et al., 1981).

We also introduce the contact stress of a contact C, defined as

1
= syldfe (18)

The contact stress is associated with an element of volume 3V, (area 2S¢ in 2D, see Fig. 8) and is an
incomplete tensor, as understood from the definition. From Eq. (18) we find the global stress is written as

1
6:;;3VCGC~ (19)

ac

For the couple stress, we can also derive similar definitions of up,u, and p and their related equations as
explained for stress, replacing f with the contact couple m in Eqgs. (15)—(19).
We now proceed to the strain y. Referring to a relation in generalized continuum mechanics, expressed as

dx-y=du+dx xw, (20)
where u and w are a displacement and rotation (Table 3), we can write, for a small circle of radius a,
1
y=1lm— ¢ #(du+d 21
= tim o du+ de o), e1)

where ¢ is a unit tangent vector with the same direction as dx.
Regarding Eq. (21), we define the void strain (in 2D), the strain of a void cell D (Fig. 9) in the discrete
mechanics of granular material:

1 ~
Yp = S_LDC(_SDC)”C (22)
D

recalling the “A’ notation defined after Eq. (4). In Eq. (22), spc and uc are the void cell radius vector (Fig.
3) and the contact displacement (Table 2), respectively, and

Sp = %LDC(—§DC) Ao = %LDCSDC x e (23)

is the area of the void cell D. For a two-dimensional RVE with area S, the average strain is defined in the
following form:

1 1 N 1 R 1
Yy = S ZSDVD = 5 ZLDC(_SDC)llC = 5 ZLCD(_SDC)HC = 3 ZhCuC- (24)
D D C e
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Fig. 9. Void cell D for definition of void strain v,,.

In 3D, we define the void strain, the strain for a void cell D, in the following form:
1 1
"> = " CDDLDC<2 oD X SDC> uc, (25)

where t5D and spc are radius vectors (Figs. 3(b) and 5), and

CDD3 DD LDC%SDC X lc = %CEDLDCIC . (tBD X SDC) (26)

is the volume of the void cell D. The meaning of strain y; will be described below. The global strain for an
RVE of volume V is defined in the following forms:

1 1
Y= % XD: oD = Z CDDLDC< pp X sDC)”C = ZLCDCDD< op X sDC)”C =7 XC:hC”C-

(27)

In this equation, we have used the identity (6), and, by doing so, have expressed the global strain in
alternative forms: as a sum over void cell volumes and as a sum over contact cell volumes (see Eq. (30)).

As the contact displacement uc includes the effect of particle rotations, referring to Eq. (20), we intro-
duce the contact strain 7y, the strain at a contact C, having the property

IC Ve = Uc. (28)
Using Eq. (7), we can write the following definition of strain y., which satisfies Eq. (28):
1
Y= ﬁhc”& (29)

noting, however, that Eq. (28) does not infer a unique definition of contact strain y., such as the one given
in Eq. (29). The global strain y defined from y5 is also written as

1
C

It is noted here that, like as the contact stress o¢, the contact strain y. is an incomplete tensor. From this
reason, the void strain y; (or y, in 2D) that is a complete tensor becomes necessary in the discrete
mechanics of granular assemblies. By adopting Eq. (29) as a generating definition of contact strain y., we
can now explain the meaning of the void strain y; in Eq. (25). Unlike other definitions of strain in granular
materials (e.g., Bagi, 1996a; Kruyt and Rothenburg, 1996; Kuhn, 1997), the void strain y; does not rep-
resent the average deformation of a tetrahedron whose vertices (particle centers) are being displaced but
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whose edges remain straight. Such strain definitions are based only on the displacements up of the particle
centers; whereas, y5 is based upon the contact displacements uc, which depend both upon the particle
displacements and rotations, up and wp, as given in Table 6. The contact strain 7. is generated from the
contact displacement uc (see Eq. (28)), and the void strain y; in Eq. (25) is inferred from the identical sums
in Eq. (27). Because y; and y. are derived from the combination of a displacement and rotation field, the
associated compatibility conditions are altered, as is discussed in Section 7.

For the rotational strain, we can also derive similar definitions for op, o5, o, and ac and their related
equations by replacing uc with the contact rotation w¢ in Egs. (22)~(30). We note that o¢, uc, 7, and oc
are the basic tensorial form definitions for stress and strain in the discrete mechanics of granular assemblies.

Next, we consider the internal work done in a three-dimensional RVE. We might write the work as

W:zcz(fc'chrmc-wC):;3VC(JC-~yC+uC-~aC), (31)

but note that the Hill’s condition (Hill, 1963)
W=Ve-y+p o (32)

does not hold for the stress and strain definitions in Egs. (16) and (24). However, by combining Egs. (7),
(18) and (29), we can introduce a special double inner product oo (with respect to quantities ¢~ and 7. for
contacts C), having the property

1
foon =y Melle ne) (33)

.1 1
¢= % ;3chc; n= Vv zc:3VC”ICa (34)

so that Eq. (31) becomes
W ="V(o0oy+ poon). (35)

This equation is considered a modified form of Hill’s condition for discrete, granular assemblies.

6. Tensorial form definition of discrete-mechanical quantities

As seen in the previous section, we need to introduce tensor definitions of discrete-mechanical quantities
for the following reasons:

(1) To consider global, bulk mechanical properties, we must introduce averaging quantities that are tenso-
rial.

(2) Because the mechanical quantities in continuum mechanics are tensorial, we must introduce definitions
of discrete-mechanical quantities in a tensorial form in order to make comparisons between discrete-
and continuum-mechanical systems.

Regarding the definitions of contact stress and contact strain explained in the previous section, we
introduce the basic tensorial form definitions of discrete-mechanical quantities in Table 7. As is understood
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Table 7
Basic tensorial form definitions of discrete-mechanical quantities
Particle Contact Void
2D
Force FoN_1(f» oc\ _ le (fc o\ _ (fp
Mp ) ~ Sp\mp )’ te ) 280 \me )’ w /) \mp
Couple P £ ! -
. wp o he (we Jp L (wp
Rotation N =— s =—
(&) o)== (i) (0)-5()

Displacement

Dual-contact Void cell

3D

Force Fp\ _ 1 (fe oc\_ e (fc o\ _So (fo f5
M - V mp ’ 12% a 3V(~ mc ’ xp B 3VD mp ’ myg
Couple r P 4
w0 0 B30 @3
Displacement up Ve o\ uc D b\ Up b 5\ M5

from Table 7, the meanings of discrete-mechanical quantities defined for a dual-contact D, (f,, mp)" and
(wp, uD)T, are the stress function and incompatibility, respectively.

7. Conditions for stress and strain

In this section, we explain the conditions for stress and strain, comparing the related equations in
continuum and discrete mechanics. In continuum mechanics, referring to Table 4, equilibrium in 3D is
expressed as

Div(Z)—i—(AIj[) —0, (36)

where (F, M )T is the body force (density) given to the field beforehand. If we have a stress function (¢, x)T,
which satisfies the relation

(Z) —R0t<§[;>, (37)

the body force must vanish (see Eq. (11)). In this case, the equilibrium condition of (g, ,u)T becomes

(3)- (72 D))

In discrete mechanics, the equilibrium condition in 3D, which corresponds to Eq. (36), is written as
(Tables 6 and 7)

- F
“Dpche- ()11 S ) =0 39
pchc (Mc>+ P(MP) ) (39)

where (Fp, M p)T is the average body force and couple (density) within a particle cell P, and V} is the volume
of particle cell P. For zero body force, the corresponding equations to Eqs. (37) and (38) are
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oc\ _ Ic 5 (PD>
=—Lcpkp - , 40
<,“C) 3y TP (XD (40)
~ D 0 hc-o
Dpche- [ %€ ) = re )( ¢ C) =0, 41
peffe (#C) (Dpcypcx DPC hc',uc ( )

where hc and kj are defined in Egs. (6) and (9). Note that, in discrete mechanics, Eq. (13) are used in place
of Eq. (11).
In continuum mechanics, the incompatibility (J, K)" is defined in the form

<IJ(>—Rot<;‘>, (42)

and if the strains (a,7)" are derived from the displacements and rotations (w,u)" by the relation

<‘;‘> Gmd<';>, (43)

then the incompatibility must vanish (see Eq. (11)). In this case, we have the equation

()= (55 2)(0)-»

which is called the compatibility condition of strains (x,7)".

In discrete mechanics, the corresponding equations to Eqs. (42)~(44) are written as

Jp kp ~ 1 Ofc)

=—(L Ic- 45
(1) =55 oo (2€). (45)
076} hC ~ T Wp
() == 5@ (2). (46)
~ L 0 lc-a
Lpc)te- () = pe cde) g, 47
(Loc) le <Vc> (LDCSDC>< LDC)(’C'VC) (47)

In 2D, the operators Dcprpe X and Lpcspe x in Egs. (41) and (47) should be replaced by Dcpipc and LpcSpe,
respectively.

8. Discussions

For the strain in granular assemblies, Bagi (1996a) proposed a similar definition to that in this paper.
Bagi’s definition of strain is based on a discretization of the integral transform equation in continuum
mechanics and has a form similar to the last right side of Eq. (27). One difference is that the so-called
complementary area vector is used in place of the dual branch vector. As is explained by Satake (2002), this
means that in Bagi’s definition, the center of gravity of a void cell is used in place of the Dirichlet center, so
that particle size is disregarded. It is noteworthy that, although any point may be used in place of the
Dirichlet center, the use of the Dirichlet center makes the geometrical explanation most simple and clear, so
that a systematic analysis, such as made in this paper, becomes easy both in 2D and 3D. Another difference
between the strain definition in Eq. (27) and Bagi’s definition is that Eq. (27) is based upon a contact
displacement, that is the relative displacement of two points of a former contact point, whereas Bagi’s
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definition is based upon the relative displacement of particle centers, as was explained after Eq. (30). The
definition of strain in 2D using the center of gravity was also proposed by Kruyt and Rothenburg (1996).

As for internal work in a granular assembly, we can give the following extended expressions. If we
assume that (f, mc)" and (up, wp)' are generated from (f,, mp)T and (uc, we)™ by the generating
equations shown in Table 6, respectively, then we have

W= S feme) () = om) o) (o) () = om)-(20). )

Using the relations shown in Table 7, we can write Eq. (48) as

W= Z3Vcoc7uc ( ) Z(fc’mc ( ) Z(f”’mD ("1;)

K
= Z3VD((PDa w) | 57 ) (49)

D Ip
If we apply the special double product oo defined by Egs. (33) and (34) to dual-contacts D, we can write
W ="V(pooK+ yool), (50)

where
1 1

=;§Dj3VDmD, K=;ZDj3VDKD, (51)

and similar equations for y and J.
Quite similarly, if we assume that (f, mp)T and (uc, wc)T are generated from (f, mc)T and (up, wp)T,
respectively, we can write

W =V(Foou+M oow), (52)

where

1 1
:I_/ZVPFP; ”szVP”h (53)
P P

and similar equations for M and w. In this case, the special inner product oo is applied for particles P. It is
noted that equations similar to Egs. (50) and (52) are derived in generalized continuum mechanics from the
integral transform principles (Satake, 1971).

In continuum mechanics, the symmetric part of strain y is written as ¢ and is simply called strain. In
ordinary, classical continua we have

w =1V xu, (54)
and accordingly ¢ coincides with y. The compatibility condition of ¢ is written as
VV x xe=0. (55)

In discrete mechanics, the symmetric parts of strains y. and y, defined by Egs. (29) and (27) respectively,
are written as

1 1
fc=75 (ye +7¢8) = o (hcuc +uche), (56)
1 1
5 V + "/ Z 3Veee = 7 ; hcllc + uchc (57)
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The compatibility condition of & is written as
(LDCIC')(LDCIC')SC = _(LDCIC')LDCSDC X Wc. (58)

It is noted here that, in the discrete mechanics of granular assemblies, the right side of Eq. (58) does not
vanish, owing to the inhomogeneity of particle size and configuration in the assembly.

9. Concluding remarks

This paper proposed tensorial form definitions of discrete-mechanical quantities for granular assemblies
using some new geometric tools based on the Dirichlet tessellation of an assembly. Although the tensorial
form definition of stress has been already known, this paper adds similar tensorial form definitions for other
mechanical quantities including the strain in discrete mechanics of granular assemblies. This paper ex-
plained how valuable such definitions are for considering the correspondence between discrete and con-
tinuum mechanics.

As the particles considered in this paper are limited to spheres or disks, a more general theory for
granular assemblies with arbitrary shape (e.g. Bagi, 1996b) must become necessary. However, in the present
stage, we put off this problem for a future work.

Appendix. Matrices Dpc, Lpc, and Gy,

In this paper, we use the following matrices Dpc, Lpc, and Cyj, to express the topologic correspondence
of the three or four elements of a granular assembly; P, C, and D in 2D; P, C, D, and D in 3D (see Table 1):
The incidence matrix Dpc for a particle graph (oriented graph) is defined as

1: if branch vector /. is incident at particle center P and is oriented away from P,
Dpc = ¢ —1: if branch vector /¢ is incident at particle center P and is oriented toward P,
0: otherwise,
(A.1)

where the direction of branch vector /¢ is arbitrarily given beforehand.
The loop matrix Lpc for a triangular loop (void cell in 2D, or dual-contact in 3D) D is defined as

1: if branch vector /¢ is included in loop D and the orientation of /¢
and that of loop D coincide,
Lpc = ¢ —1: if branch vector /¢ is included in loop D and the orientation of /¢ (A.2)
and that of loop D do not coincide,
0: otherwise,

where the orientation (clockwise or counter-clockwise) of loop D is fixed as clockwise in 2D and is arbi-
trarily given beforehand in 3D.
In 3D, we need the cell matrix Cz,, for a void cell D defined as

l: orientation of loop (dual-contact) D is counter-clockwise as a face of void cell D,
Csp =4 —1: orientation of loop (dual-contact) D is clockwise as a face of void cell D,
0: otherwise.

(A.3)
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As is known in the graph theory, the above matrices satisfy the following identities:

DpcLep = 0» LCDCDB = 07
Coplpc =0, LpcDep = 0,

where D¢p, Lep and Cpp are the transpose of Dpc, Lpc and Cyp, respectively.
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